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a b s t r a c t

Fractal analysis is increasingly used to describe, and provide further understanding to,
zooplankton swimming behavior. This may be related to the fact that fractal analysis
and the related fractal dimension D have the desirable properties to be independent of
measurement scale and to be very sensitive to even subtle behavioral changes that may be
undetectable to other behavioral variables. As early claimed by Coughlin et al. (1992), this
creates ‘‘the need for fractal analysis’’ in behavioral studies, which has hence the potential
to become a valuable tool in zooplankton behavioral ecology. However, this paper stresses
that fractal analysis, as well as the more elaborated multifractal analysis, is also a risky
business that may lead to irrelevant results, without paying extreme attention to a series
of both conceptual and practical steps that are all likely to bias the results of any analysis.
These biases are reviewed and exemplified on the basis of the published literature, and
remedial procedures are provided not only for geometric and stochastic fractal analyses,
but also for the more complicated multifractal analysis. The concept of multifractals is
finally introduced as a direct, objective and quantitative tool to identify models of motion
behavior, such as Brownian motion, fractional Brownian motion, ballistic motion, Lévy
flight/walk andmultifractal randomwalk. I finally briefly review the state of this emerging
field in zooplankton behavioral research.
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1. Introduction

According to the titles of several seminal monographs, such as ‘The fractal geometry of Nature’ [1] and ‘Fractals every-
where’ [2], fractal properties may be expected everywhere. Fractals have indeed early been suggested as a design principle
in biology, as a fractal design is structurally and functionally efficient as it requires little energy to sustain itself [3]. It is
hence not surprising that fractal structures have been found everywhere in nature. The Web of Science (accessed March 4,
2015) returned 23,249 and 54,024 articles respectively containing the word fractal in their title and topic between 19671

and 2015. Fractals are hence a prolific topic, and have found applications in nearly all scientific fields, including terrestrial
and aquatic ecology – see Ref. [6] for a recent review – behavioral studies in general and zooplankton behavioral ecology in
particular (Fig. 1).

The word plankton has first been coined by the German physiologist Viktor Hensen (1835–1924) [7] from the Greek
adjective πλαγ κτ óς – planktos, wandering – to define the diverse group of organisms that live in nearly all water bodies
of the planet. These organisms are essential to ocean life, as they provide a crucial source of food to many large aquatic
organisms, such as fish and whales [8,9]. Plankton organisms include microbes such as viruses and bacteria (virioplankton
andbacterioplankton), unicellular plants (phytoplankton) and a range ofmulticelled organisms (zooplankton),whichmainly
consists of small crustaceans as well as the eggs and larval stages of larger animals such as fish [8,9]. Most planktonic species
are microscopic, but plankton also includes organisms covering a wide range of sizes, including large organisms such as
jellyfish [8,9]. Though plankton organisms are typically thought to be passively drifting with currents, the quantitative
assessment of the swimming behavior of even the most minute of them is increasingly thought as a critical determinant
to both their ecology and their role in global biogeochemical fluxes [10–12]. Plankton behavior in general, and zooplankton
behavior that is investigated in the present review, is hence a small-scale process of global significance [13]. The Web of
Science (accessed March 4, 2015), however, returned a unique paper that includes the words fractal and plankton in its
title, and only 42 papers include the words fractal and plankton in their topic. Similarly, only 13 papers include the words
fractal, plankton and behavior in their topic. While this indicates that plankton behavioral research is still relatively poorly
fractally-colored, it also stresses that fractally-inspired behavioral approaches have a significant potential to grow in the
near future.

Fractals have been successfully applied to a wide range of marine biology and ecology topics including species diver-
sity [14,15], the topographic complexity of coral reefs and rocky shores [16–22], the morphology of aquatic fauna and
flora [23–33], the geometric complexity and allometric properties of marine snow [34–44], the temporal pattern of dis-
solved inorganic nutrients, phytoplankton and zooplankton [45–50], and the spatial distribution of both intertidal [51–59]
and pelagic communities [60–68]. More specifically, fractals have been extensively used to characterize the searching be-
havior of organisms ranging from protozoa to large vertebrates such as seabirds, fish and mammals [6]. Note that while
nearly 60% of the marine sciences studies based on fractal approaches have been published over the last decade (Fig. 1(a)),

1 When Mandelbrot, the father of fractals, defined in his seminal work, entitled ‘‘How long is the coast of Britain? Statistical self-similarity and fractional
dimensions’’ [4], what will formally be coined fractal geometry a decade later [1,5].
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Fig. 1. Published papers that used fractal-related concepts to assess (A) the complexity of a range of patterns and processes in marine sciences and (B) the
nature of zooplankton swimming behavior. The cumulated number of published papers is shown by the open dots.

the situation is far more drastic in behavioral ecology in general and in zooplankton behavioral ecology in particular as
respectively nearly 80% and more than 90% of the studies based on fractal approaches have been published over the last
decade (Fig. 1(b)), suggesting a field in rapid development.

Specifically, the rationale behind the increase in the use of fractal-related tools in plankton behavioral ecology lies in
the fact that, in contrast to conventional behavioral metrics such as speed or turning rate, fractal analysis and the related
fractal dimension D have the desirable properties to be independent of measurement scale and to be very sensitive to
even subtle behavioral changes that may be undetectable to other behavioral variables [69–73]; see also Refs. [74–76]
for reviews on the advantages of fractal approaches over standard metrics in behavioral science and medicine. As early
claimed by Coughlin et al. [69], this creates ‘‘the need for fractal analysis’’ in behavioral studies. However, it is noteworthy that
swimming trajectories of males, females and non-ovigerous females of the estuarine copepod Pseudodiaptomus annandalei
that are unambiguously distinct through visual inspections – see e.g. Ref. [77], their Fig. 8 – and respectively described as
‘‘predominantly rectilinear ’’, ‘‘more convoluted’’ and ‘‘more tortuous’’ (hence putatively fulfilling different degrees of space-
filling) were characterized by non-significantly different fractal dimensions [77]. Similar conclusions were reached for
the swimming behavior of Euterpina acutifrons females despite the visual differences observed in the complexity of their
trajectories (Wasserman, personal communication; see also Ref. [78], their Fig. 1). These facts may suggest that fractals are
not necessarily the ultimate tool to assess the complexity of swimming behavior under any experimental or environmental
conditions.

Despite the ever increasing number of publications that used fractals to answer key questions in aquatic biology and
ecology (Fig. 1; see also Ref. [6] for a recent review), the significance of the seminal work of Mandelbrot [1,4,5] may still
have to reach many biologists and ecologists, as according to the Web of Science (accessed March 4, 2015) the research
areas related toMarine and Freshwater Biology, Oceanography, andWater Resources account for only ca. 0.5% and 1.4% of the
published articles containing respectively the word fractal in their title and topic. As such, the inappropriate use of fractal
analysis in ecology in general, and in behavioral ecology in particular – though not an isolated case, see e.g. Refs. [67,79–88]
– may have critical consequences on the development of this research area. For instance, a few studies conducted on the
swimming behavior of a range of zooplankton species explicitly reported fractal dimensions falling outside the theoretical
range 1 ≤ D ≤ 2 expected for a swimming trajectory, i.e. D < 1 [77,89] and D > 2 [69,90]. In the absence of both a detailed
procedure related to the way they conduct their fractal analysis and a discussion of this aspect, this might indicate potential
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Fig. 2. Representative three-dimensional trajectories of E. affinis males (A) and non-ovigerous females (B). Each trajectory has been plotted in a
standardized volume of 15 cm × 15 cm × 15 cm.
Source:Modified from Ref. [105].

flaws in their approach. These flaws are difficult to unambiguously assess, butmay stem from a range of factors that are both
extrinsic and intrinsic to fractal analysis such as the potential anisotropy and different lengths of the analyzed trajectories,
and the goodness-of-fit used to characterize the range of scale over which the scaling properties of the trajectories (hence
their fractal dimensions) is estimated.

In this context, and considering the rapid expansion of the applications of fractal-related methods to zooplankton
swimming behavior (Fig. 1(b)), it is now a critical time to review the potential issues and limitations that may hamper
the future development of this burgeoning field. In this context, I first briefly rehearse some of the basic principles behind
fractal geometry before consideration of its use in behavioral ecology. I subsequently address potential issues and limitations
related to fractal analysis that may lead to spurious results and conclusions, hence I suggest a few critical steps, criteria
and remedial procedures that need to be addressed for a behavioral fractal analysis to be meaningful. After addressing the
fundamental differences between self-similar and self-affine fractals, I describe one of the most widely used techniques to
characterize self-affine fractals, and also how fractal dimensions can be derived from frequency distribution. I subsequently
introduce the concept of multifractals, and describe howmultifractals uniquely provide a direct, objective and quantitative
tool to thoroughly identify models of motion behavior, such as Brownianmotion (i.e. normal diffusion), fractional Brownian
motion, ballistic motion, Lévy flight/walk and multifractal random walk. I finally briefly review the state of this emerging
field in zooplankton behavioral research.

To make the point that the issues that I discuss in this paper are current, I chose to critically assess 44 papers published
since 1992 inwhich the spatial and/or temporal complexity of zooplankton swimming behaviorwere analyzed using fractal-
related tools (Tables 1–3). Note, however, that any of the theoretical and practical limitations of fractal analysis addressed
here are quite ancillary to the main point of these papers – most of them use fractal analysis as a tool to compare swimming
trajectories, or more generally swimming behaviors, between experimental conditions rather than to determine the true
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Table 1
Review of zooplankton behavioral studies based on self-similar fractal methods.

Organism Species Method Scaling range Optimization
criteria

Fractal
dimension

2D vs. 3D Source

Fish Clownfish
(Amphiprion
perideraion)

L(l) ≈ l1−D 63.1a na D > 2 3D [69]b

Fish Barramundi
(Lates
calcarifer)

L(l) ≈ l1−D na na D < 1 2D [89]b

Crustacean (Cladocera) Daphnia
magna

N(l) ≈ l−D 7.5a na D > 2 2D [90]b

Crustacean (Cladocera) D. pulex N(l) ≈ l−D

L(l) ≈ l1−D
6.3 R2-SSR; zero-slope 1 ≤ D ≤ 2 3D [91]

Crustacean (Copepoda) O. venusta N(l) ≈ l−D

L(l) ≈ l1−D
200 R2-SSR 1 ≤ D ≤ 2 2D [92]

Crustacean (Cladocera) Daphnia
pulicaria

L(l) ≈ l1−D na na 1 ≤ D ≤ 2 2D [93]

Crustacean (Copepoda) T. longicornis L(l) ≈ l1−D na na 1 ≤ D ≤ 2 2D
Crustacean (Cladocera) D. pulex N(l) ≈ l−D 100a r2 1 ≤ D ≤ 2 3D [94]
Simulation of
swimming tracks

– na na 3D

Crustacean (Copepoda) E. affinis N(l) ≈ l−D na r2 1 ≤ D ≤ 2 2D [95]
Crustacean (Cladocera) D. pulex N(l) ≈ l−D 100a r2 1 ≤ D ≤ 2 3D [96]
Simulated trajectories – N(l) ≈ l−D 100a r2 3D
Crustacean (Copepoda) Leptodiaptomus

ashlandi
N(l) ≈ l−D 100a r2 1 ≤ D ≤ 2 3D [97]

Crustacean (Copepoda) C. furcatus N(l) ≈ l−D na na 1 ≤ D ≤ 2 2D [98]
Fish Whitefish (C.

lavaretus)
N(l) ≈ l−D 5a r2 1 ≤ D ≤ 2 2D [99]

Crustacean (Copepoda) T. longicornis N(l) ≈ l−D

L(l) ≈ l1−D
na R2-SSR 1 ≤ D ≤ 2 2D [71]

Simulated trajectories – na r2 1 ≤ D ≤ 2 3D [100]
Crustacean (Copepoda) A. clausi, C.

typicus,
L(l) ≈ l1−D na r2 1 ≤ D ≤ 2 3D [72]

P. parvus, P.
elongatus,
T. longicornis

Crustacean (Copepoda) T. longicornis N(l) ≈ l−D na na 1 ≤ D ≤ 2 3D [101]
Crustacean (Cladocera) D. pulicaria N(l) ≈ l−D na r2 1 ≤ D ≤ 2 2D [102]
Fish Malabar

grouper (E.
malabaricus)

N(l) ≈ l−D na r2 1 ≤ D ≤ 2 3D [103]

Crustacean (Copepoda) E. affinis N(l) ≈ l−D

m(l) ≈ l−D
na R2-SSR 1 ≤ D ≤ 2 3D [73]

Crustacean (Copepoda) P. annandalei N(l) ≈ l−D na na D < 1 2D [77]b

Crustacean (Copepoda) E. affinis N(l) ≈ l−D na na 1 ≤ D ≤ 2 3D [104]c

Crustacean (Copepoda) E. affinis N(l) ≈

l−D m(l) ≈

l−D

na R2-SSR 1 ≤ D ≤ 2 3D [105]

Crustacean (Copepoda) L. branchialis N(l) ≈ l−D na na 1 ≤ D ≤ 2 3D [106]c

Crustacean (Copepoda) E. acutifrons N(l) ≈ l−D ca. 10 000a r2 1 ≤ D ≤ 2 3D [78]
a The scaling ranges were not explicitly provided, but estimated graphically from the figures of the published work.
b These references unambiguously reported fractal dimensions that fall outside the theoretical range 1 ≤ D ≤ 2 expected for a swimming trajectory.
c The confidence intervals estimated for fractal dimensions from the means and standard deviations provided in both Table 2 of Ref. [104] and Fig. 4(d)

of Ref. [106] suggest that a few fractal dimensions fall outside the range 1 ≤ D ≤ 2, in particular with D < 1.

value of their fractal dimensions – hence the criticisms implied by the following statements and analyses do no detract from
the central point of their work.

2. Fractal geometry in a (very) few words

In a paper entitled ‘How long is the coast of Britain? Statistical self-similarity and fractional dimensions’, Mandelbrot [4]
defined the basis of what will be formally coined fractal geometry a decade later [1,5], and introduced a new concept that has
rapidly provided a unifying and cross-disciplinary basis for the description of nature’s complexity [2,6,14,123–127]. Many
natural phenomena have a nested irregularity and may look similarly complex under different resolution. For instance, the
complexity of coastlines will repeatedly become evident if a section of that coastline is studied in finer and finer detail,
ultimately until the outlines of individual boulders, rocks, and grains of silt and sand are being traced. A fundamental
consequence of this nested structure is that the length of a coastline, or the surface of any two-dimensional fractal structure,
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Table 2
Review of zooplankton behavioral studies based on self-affine fractal methods.

Organism Species Method Scaling range Optimization criteria 2D vs. 3D Source

Crustacean (Copepoda) D. pulex E(f ) ≈ f −β na na 3D [107]
Crustacean (Copepoda) C. darwini p(t) ≈ t−c 6–7a na 2D [108]
Crustacean (Copepoda) C. hamatus P(t ≤ T ) ≈ t−φ 33.3a R2-SSR 3D [70]
Crustacean (Copepoda) C. furcatus E(f ) ≈ f −β na na 3D [98]
Crustacean (Copepoda) P. annandalei E(f ) ≈ f −β 100a R2-SSR 2D [109]

p(t) ≈ t−c na r2

p(v) ≈ v−c b – –
Crustacean (Copepoda) E. affinis p(v) ≈ v−c 15a r2 2D [110]

p(t) ≈ t−c na r2
Crustacean (Copepoda) E. affinis p(t) ≈ t−c 2.5–27a na 2D [111]
Crustacean (Copepoda) P. annandalei p(t) ≈ t−c 10–100a r2 2D/3D [112]

p(v) ≈ v−c b – –
E. affinis p(t) ≈ t−c 10–100a r2 2D/3D [112]

p(v) ≈ v−c b – –
Crustacean (Copepoda) P. annandalei p(v) ≈ v−c b – – 3D [113]
Crustacean (Copepoda) A. clausi, C. typicus, N(l ≤ L) ≈ l−φ 13–20a r2 3D [72]

P. parvus, P. elongatus,
T. longicornis

Crustacean (Copepoda) E. affinis p(v) ≈ v−c b – – 2D [114]
Crustacean (Copepoda) C. sinicus p(v) ≈ v−c b – – 2D [115]
Crustacean (Copepoda) T. longicornis E(f ) ≈ f −β 10–100a na 2D [116]

p(v) ≈ v−c b – –
Crustacean (Copepoda) E. affinis N(l ≤ L) ≈ l−φ na R2-SSR 3D [73]
Crustacean (Copepoda) P. annandalei p(v) ≈ v−c b – – 3D [77]
Crustacean (Copepoda) C. furcatus E(f ) ≈ f −β c – – 3D [117]
Crustacean (Copepoda) T. longicornis p(v) ≈ v−c b – – 2D [118]
Crustacean (Copepoda) E. affinis p(v) ≈ v−c b – – 3D [119]
Crustacean (Copepoda) L. branchialis p(v) ≈ v−c b – – 3D [106]
Crustacean (Copepoda) p(t) ≈ t−c na r2 3D
Crustacean (Copepoda) E. affinis p(v) ≈ v−c b 10–100a r2 2D [120]
Crustacean (Copepoda) P. annandalei p(v) ≈ v−c b – – 3D [104]
Crustacean (Copepoda) P. marinus p(t) ≈ t−c b – – 2D [121]
Crustacean (Copepoda) p(v) ≈ v−c b – – 2D
a The scaling ranges were not explicitly provided, but estimated graphically from the figures of the published work.
b The probability density functions p(v) and p(t) of instantaneous velocity v and residence time t in a behavioral state were not used to infer the scaling

properties of velocity or residence time fluctuations, but to assess eventual differences in the shape of a log–log plot of p(v) vs. v and p(t) vs. t between
different experimental conditions.

c Spectral analysis was not used to assess the nature of the scaling and estimate the exponent β , but instead to define an eventual characteristic time
from the velocity data of swimming trajectories.

does not converge to a fixed value, but keeps increasing, theoretically without any upper limit. Coastlines do not have a
length; instead, they have fractal extents, and common statements such as ‘‘the length of coastline of Great Britain plus its
principal islands is about 19,491 miles’’ [128] are fundamentally flawed. The nested structure of fractal objects, referred to as
scale-invariant or self-similar (i.e. each portion can be considered a reduced-scale image of thewhole), could be thought of as
an additional source of complexity; in contrast to Euclidean lines, they cannot be differentiated or integrated, hence they are
impervious to calculus. A nested structure, however, potentially becomes a source of simplicity in the framework of fractal
geometry, where the degree of complexity of a given pattern or process can be described by a dimension D, the so-called
fractal dimension. In contrast to conventional (Euclidean) dimensions, a fractal dimension is fractional, hence describes the
degree of complexity and tortuosity of an object. For instance, the Euclidean dimensions, d, of a straight line, a circle and a
cube are respectively d = 1, d = 2 and d = 3. A fractal line will have a fractal dimension 1 ≤ D ≤ 2, and a completely
self-similar complex surface will ultimately lead to D = 3. For example, the UK coastline has a fractal dimension of 1.27 [4],
and a typical cloud outline has a fractal dimension D = 1.35 [129]. Two of the more complex living objects reported so
far are the multiply branched, fine filamentous seaweed Desmarestia menziesii which has a fractal dimension D bounded
between 1.51 and 1.83 [28] and the ramified sponge Raspailia inaequaliswhich has D bounded between 1.44 and 1.75 [30].

3. Fractal geometry and zooplankton swimming behavior

3.1. From scale-dependent to scale-independent behavioral metrics

Standard behavioral metrics such as trajectory length, move length, move duration, swimming speed, turning angle,
turning rate, and net displacement are implicitly a function of their measurement scale [91]. This scale-dependence implies
that there is no single scale at which swimming trajectories can be unambiguously described. This is not the case, however,
for fractal dimensions. The fractal dimension D, considered as a scale-independent descriptor of swimming behavior, is
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bounded between D = 1 and D = 2. When an organism moves along a completely linear path, the actual distance traveled
equals the displacement between the start and the finish, and D = 1. In the opposite extreme instance of curviness, when
the motions are so complex that the path fills the whole available space, D = 2.

3.2. On the boundaries of the fractal dimensions of swimming trajectories

I address the a priori paradoxical result that fractal dimensions estimated from three-dimensional trajectories are smaller
than 2, the expected lower bound for objects embedded in a three-dimensional space [130]. An object embedded in a
d-dimensional space is expected to have a fractal dimension bounded between d− 1 and d [126]. This is indeed the case for
many natural objects. For instance, a succession of dust particles spread out linearlywill have a dimension bounded between
0 and 1 as they occupy a fraction of the space greater than a single point (dimension 0), and lower than a line (dimension
1). Similarly, a convoluted curve will occupy a fraction of space between a line (dimension 1) and a surface (dimension 2).
In contrast, the dimension of any three-dimensional branching structure such as trees and marine sponges will be bounded
between 2 (a surface) and 3 (a volume). The swimming trajectories of zooplankton organisms are typically embedded in
a three-dimensional environment (Fig. 2). However, each change of direction occurring within a two-dimensional space,
the trajectory of any zooplankton organism remains a convoluted two-dimensional object. Its fractal dimension is bounded
between a one-dimensional space (i.e. a line, D = 1) and a two-dimensional space (i.e. a surface, D = 2); see Ref. [6]
for examples and a detailed discussion. A direct consequence of the above-mentioned property is to question previous
reports of fractal dimensions falling beyond the limits discussed above for both two-dimensional analyses (D < 1 [89]) and
(D > 2 [90]), and three-dimensional analyses (D > 2, [69]), and D < 1, [77]. Note that this issue is not limited to plankton
behavioral ecology as fractal dimensions D < 1 and D > 2 have respectively been found for the trajectories of the sandy
shore snail Batillaria zonalis [131] and the Gray wolf Canis lupus [132].

It is also noteworthy that, as defined above, a trajectory corresponds to the continuous curve drawn from the line
segments joining successive positions recorded in time. This fundamentally differs from the discrete point pattern created by
the successive locations occupied by the organism in time. In the former case, 1 ≤ D ≤ 2, while in the latter 0 ≤ D ≤ 1. As a
consequence, the fractal dimension of the trajectory followed by a swimming organism does not equal the fractal dimension
of its successive positions, especially when the spatial resolution of the measurements is large compared to the size of the
organism; this is typically the case in zooplankton when sudden accelerations and strong jumps occur (up to hundreds of
mm s−1 for a millimeter-scale zooplankton organism, see e.g. Ref. [133]) and lead to ‘positional gaps’ that require specific
technologies such as high-speed imaging to be resolved [133].

Finally, it is undeniable that the fundamental aspiration of behavioral studies using fractal-related tools lies in the
comparison and understanding of e.g. ‘‘the geometry of trajectories between’’ experimental and environmental ‘‘conditions
rather than to determine the true value of their fractal dimension’’ [77]. However, the colloquialisms ‘‘the proof is in the numbers’’
and ‘‘numbers don’t lie’’ have strong, and undisputable, implications in Science. For instance, Sir Isaac Newton’s Universal Law
of Gravitation put an upper limit to the size of animals, which is fundamentally restricted by both the strength of bone and
the mass of the Earth [134–138]. In other words, an elephant could not fly and a whale could not walk even if they had
wings and legs. Similarly, fractal dimensions estimated from the trajectory of a swimming organism – and more generally
from any convoluted line [4] – have indefectible lower and upper limits that cannot be exceeded to ensure the relevance
of the conclusions of any fractal analysis, whatever the biological and ecological questions driving the analysis may be. To
paraphrase Sir William Huxley, this is essential to avoid one ‘‘great tragedy of Science, the slaying of a beautiful hypothesis by
an ugly fact ’’ [139].

As explored below, the discrepancies observed between empirical fractal dimensions and their theoretical limits might
result from (i) the lack of objective procedures to identify the scaling ranges, and the subsequent fractal dimensions of
swimming trajectories, and (ii) neglecting to take into account the potential anisotropy of the swimming trajectories.

4. Estimating the fractal dimensions of swimming trajectories

4.1. The box-counting method

To unambiguously address the issues of estimating the fractal dimension D from ‘‘the slope of the power fit of the log–log
plot of the number of boxes vs. mesh size’’ [77], let us first briefly recall the reader not acquaintedwith fractal analysis the basic
principles of the box-counting method, one of the most widely used methods to characterize the geometric complexity of
swimming trajectories (i.e. 19 of the 24 papers reviewed here used the box-counting method, either alone or in conjunction
with another method, to estimate the fractal dimensions of swimming trajectories; see Table 1). This method relies on the
l cover of an object, i.e. the number of boxes of length l required to cover the object. Practically, this method superimposes
a regular grid of boxes of length l on the object and counts the number of occupied boxes. This procedure is repeated using
different values of l. The volume occupied by a swimming trajectory is then estimated using a series of boxes spanning
a range of volumes down to some small fraction of the entire volume, typically the size of the organism considered. The
number of occupied boxes increases with decreasing box size, leading to the following power-law relationship:

N (l) ∝ l−Db (1)
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Fig. 3. Log–log plots of N(l) vs. l for O. venusta (A, B) and C. lavaretus (C). The data used in (A, B) were originally published by Seuront et al. [92] in their
Figs. 7 and 8, and the data used in (C) were digitized from the Fig. 4 of Mahjoub et al. [99] using GraphClick (Arizona Software).

where l is the box size,N(l) is the number of boxes occupied by the swimming trajectory, andDb is the box fractal dimension;
Db is estimated from the slope of the linear trend of the log–log plot of N(l) vs. l. While this may seem straightforward and
easily achievable through the implementation of an automated fitting procedure using any programming languages, a few
potential biases nevertheless need to be considered to achieve a meaningful and sound analysis.

4.2. When is a ‘linear’ log–log plot actually linear?

4.2.1. Significant linear regressions do not always imply linearity
When dealing with exact fractals, there are no difficulties in calculating a fractal dimension. The log–log plots are

fundamentally linear and an expected and a priori known result is always recovered whatever the methods employed.
However, when dealing with patterns and processes whose properties are not known a priori (e.g. coastlines, swimming
trajectories), complications begin to arise. In particular, if the box size is small compared to the resolution of the object
considered, the log–log plot of N(l) vs. l will artificially become flatter; in contrast, box size too large for the size of the
object will artificially lead to increase the slope of log N(l) vs. log l [4]; see also Refs. [32,91] for biological applications to
the marine environment.

Most previous studies that used fractal tools to assess the complexity of zooplankton swimming trajectories seem to
have implicitly made an assumption of linearity in log–log plots, as 37.5% of the 24 studies investigated here (Table 1)
do not mention the use of any criteria of fitting quality, 41.7% used linear regression and the coefficient of determination
r2, and 20.8% used one (or more) objective optimization procedures. This suggests that scaling ranges may have been
estimated rather subjectively, and their relevance relies on the statistical significativity of the coefficient of determination
(r2). Ensuring the significativity of the coefficient of determination (r2) is, however, far from being sufficient to conclude
to the presence of fractality; see Refs. [6,67,79–84] for reviews on various aspects of this issue, and [85–88] for examples
of overturned conclusions of previously claimed fractal properties. This issue is further illustrated using two examples of
fractal properties identified in the swimming behavior of the copepod Oncaea venusta [92] and the larvae of the European
whitefish Coregonus lavaretus [99]. Note that these two studies have been specifically chosen as the scaling ranges used to
estimate their fractal dimensions were both based on very high values (typically in the range 0.98–0.99) of the coefficient
of determination r2.

Using the box-counting procedure described above, Seuront et al. [92] identified a highly significant linear behavior in
log–log plots of Eq. (1) in all the male trajectories (n = 44) and 91.7% of the female trajectories (n = 66) they investigated
(see their Fig. 7) for scales ranging from 1 to 200 mm (i.e. over a scale ratio λ = 200) with coefficient of determination r2
ranging from 0.98 and 0.99 (Fig. 3(a)). In only 6 occasions (see their Fig. 8), female trajectories showed two distinct scaling
behaviors for scales bounded between 1 and10mm(λ = 10) and 10 and200mm(λ = 20),with coefficient of determination
r2 = 0.99 (Fig. 3(b)). Note that the above mentioned two distinct scaling behaviors are not computational artifacts due to
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Fig. 4. Illustration of the zero-slope procedure applied to the fractal analyses previously conducted on the swimming trajectories of (A) the copepod O.
venusta (Seuront et al. [92]; their Fig. 7 and (B) larvae of the Europeanwhitefish C. lavaretus (Mahjoub et al. [99]; their Fig. 4(b)). The dashed line (A) indicates
the range of scales over which the slope d logN(l)/d log l of vs. does not significantly diverge from 0; note that the intercept (Db = 1.33) returns the fractal
dimension (Db = 1.32) obtained by Seuront et al. [92] using the R2-SSR procedure. The dotted line (B) shows the expected behavior of d logN(l)/d log l vs.
from the fractal dimension Db = 1.25 claimed by Mahjoub et al. [99]; the open dots (B) indicate the range of scales that satisfies the zero-slope procedure,
and returns a fractal dimension Db = 1.

box sizes being either too small compared to the resolution of the object considered – the log–log plot of N(l) vs. l will
artificially become flatter when the box size decreases – or too large for the size of the object, in which case the slope of log
N(l) vs. log l would increase when the box size increases; the exact opposite is seen in Fig. 3(b). Besides, both the scaling
nature of Eq. (1) and the pertinence of the related regression analyses conducted either over scale ratios ranging from 10 to
200 are confirmed by the random pattern of the regression residuals around zero (Fig. 3(d), (e)).

Mahjoub et al. [99] also claimed they verified Eq. (1) over a scale ratio λ = 5 for the trajectories of wild and reared
larvae of the European whitefish C. lavaretus that led to both unsuccessful and successful prey capture; see their Fig. 4 [99],
and Fig. 3(c) here. However, it is readily seen from Fig. 3(c) that despite the high values of the coefficient of determination
(r2 = 0.99) there is a dispersion around the regression line that is not perceptible in Fig. 3(a), (b). This observation is
confirmed by the convex pattern of the regression residuals around zero (Fig. 3(f)). This suggests a piecewise linear behavior,
hence a continuous change of fractal dimension with scales. This behavior has serious implications: (i) it prevents the use of
fractal dimension to estimate the degree of convolution of a trajectory as its absolute prerequisite – the presence of a scaling
behavior – is not fulfilled [84], and (ii) it may be the signature of a Correlated Random Walk instead of actual fractality as
previously demonstrated [80,81] and further discussed below.

4.2.2. Towards an objective definition of scaling ranges
A note on scale-dependent vs. scale-independent fractal dimensions. A relatively large body of literature has been devoted

to assess the potential relationship between fractal dimensions and scales [140–144]. These applications of fractal analysis
do not infer if (nor assume that) movement trajectories are fractal. Instead, they make use of fractal analysis to separate
the range of scales into separate domains, by noting discontinuities in a plot of D vs. scale, i.e. a ‘fractogram’ sensu [140].
Practically, fractograms are obtained by using a specific range of scales, and then sliding this range along the scale axis. In this
particular context, fractal dimensions D are implicitly considered scale-specific, and used to detect transitions and domains.
A discontinuity in D vs. scale indicates a qualitative change in trajectory structure from one domain to another, i.e. a ‘mixed
fractal’ sensu [145], while within domains any change in Dwould be continuous [144]. This approach fundamentally differs
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Table 3
Review of zooplankton behavioral studies based on the scaling properties of probability distribution functions (PDFs) and cumulative density functions
(CDFs) of various behavioral states.

Copepod species Sex Treatment Method PDF vs. CDF Behavioral state Source
Break Sink Swima Jump

C. darwini na na p(t) ≈ t−c PDF 3 – 2.8 – [108]
C. hamatus Female Control (T = 18 °C;

S = 34)
P(t ≤ T ) ≈

t−φb
CDF 1.47–1.51 [70]

Naphthalene
(50–1000 µg/l)

– – 0.71–1.29–

P. annandalei Males 28 °C; S = 15 p(t) ≈ t−c PDF 0.76 1.58 1.75 0.67 [109]
Non-ovigerous
females

1.85 1.84 2.12 3.03

Ovigerous females 1.26 2.23 1.98 2.45
E. affinis Males 18–19 °C; S = 0.5–30 p(v) ≈ v−c PDF – – 2.7–3.5 – [110]

Non-ovigerous
females

– – 2.7–3.1 –

Ovigerous females – – 2.7–3.3 –
Males p(t) ≈ t−c PDF 2.0–2.3– 2.8–3.2 –
Non-ovigerous
females

2.1–2.3– 3.1–4.3 –

Ovigerous females 2.1–2.3– 2.8–3.8 –
E. affinis Males Control (17–18 °C; S = 15) p(t) ≈ t−c PDF 3.5 – – – [96]

Nonylphenol (2 µg/l) 6.2 – – –
Females Control (17–18 °C; S = 15) p(t) ≈ t−c PDF 2.4 – – –

Nonylphenol (2 µg/l) 2.9 – – –
P. annandalei Males 2D p(t) ≈ t−c PDF 2.8–3.72.7–2.92.0–2.8 – [112]

3D 4.3 3.1 2.6 –
E. affinis Males Density (40–160 ind l−1) p(t) ≈ t−c PDF 2.0–2.63.1–3.63.7–4.1 – [112]

Tank volume
(0.125–3.375 l)

2.1–2.63.1–4.23.7–4.1 –

A. clausi Females Control (T = 18 °C;
S = 32)

N(l ≤ L) ≈

l−φ
CDF – – 1.82–1.84– [72]

Lightc – – 1.42–1.45–
C. typicus Control – – 1.70–1.72–

Light – – 1.31–1.34–
P. parvus Control – – 1.73–1.75–

Light – – 1.46–1.48–
P. elongatus Control – – 1.60–1.61–

Light – – 1.42–1.44–
T. longicornis Control – – 1.68–1.69–

Light – – 1.20–1.23–
E. affinis Males Control (T = 15 °C; S = 4) N(l ≤ L) ≈

l−φ
CDF – – 1.75 – [73]

PAHd – – 1.32–1.68–
Non-ovigerous
females

Control – – 1.70 –

PAHd – – 1.24–1.55–

Statice Crawle Cruisee Sinke

L. branchialis Adult femalesf Control (seawater at
10 ± 0.05 °C)

p(v) ≈ v−c PDF 1.36 2.08 0.98 1.33 [106]

Control1g 1.14 2.06 1.45 1.27
Control 1.00 1.6 1.78 1.4
CCWh 1.29 1.54 1.29 1.35
Control 1.52 1.5 1.34 1.31
FCWi 1.32 1.47 1.68 1.21
Control 1.13 1.19 1.36 1.25
TCWj 1.31 1.31 1.62 1.23
Control 0.99 2.08 0.20 1.25
WCWk 1.17 1.76 0.94 1.14

a Referred to as ‘cruising ’ in Ref. [110].
b The exponent φ (Eqs. (10) and (11)) can be directly compared to the PDF exponent c (Eqs. (8) and (9)) as c = 1 + φ [122].
c The stress induced by light was either related to behavioral observations conducted in the dark during the day, or under simulated daylight conditions

during the night.
d PAH: the water soluble fraction of Polycyclic Aromatic hydrocarbons, considered at 0.01%, 0.1% and 1%.
e These behavioral states were defined based on both the swimming velocity (v) and the vertical position of a copepod within the experimental chamber as

‘static ’ and ‘crawl’ when motion is restricted to the bottom respectively with v < 3 mm s−1 and v > 3 mm s−1 , and ‘cruise’ and ‘jump’ when motion occurs
away from the bottom respectively with 3 < v < 20 mm s−1 and v > 20 mm s−1 .

f Pre-metamorphosed adult females, free-swimming stage.
g Control water introduced in the experimental chamber as a control treatment.
h CCW: cod-conditioned water.
i FCW: flounder-conditioned water.
j TCW: trout-conditioned seawater.
k WCW: whiting-conditioned water.
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from other applications of fractal analysis to biology and ecology that aim at identifying scaling ranges, i.e. ranges of scales
where fractal dimensions are invariant, hence indicative of fractality [6,84].

In this context, I hereafter briefly rehearse two simple methods that were initially developed to infer the fractal nature
of a movement trajectory by selecting objectively the appropriate range of scales to include in a regression analysis leading
that estimates a fractal dimension as e.g. in Eq. (1) [91]. Notice that they can also be used to detect discontinuities in fractal
dimension estimates, and lead to the aforementioned fractograms; see Ref. [6] for further details. Thesemethods have found
applications in various areas of behavioral ecology, including zooplankton (Tables 1 and 2) and birds [146]. Note, however,
that what follows is a suggested methodology to infer the presence and the extent of a scaling range, and is by no means a
criticism of the central point of previously published papers that did not use it (Tables 1 and 2).

A methodology for the identification of scaling ranges. The R2-SSR procedure is based on a regression window of varying
width ranging from a minimum of n data points to the entire data set. Note that in the original publication introducing the
R2-SSR procedure, Seuront et al. [91] erroneously states that n = 5was ‘‘the least number of data points to ensure the statistical
relevance of a regression analysis’’ as stricto sensu the minimum number of data points needed to fulfill the standardized t
statistics used to infer the significativity of Pearson’s correlation coefficient R is n = 3. However, as previously stressed
elsewhere [6,84], the choice of the minimum size of a regression window is fundamentally driven by the system under
study,which defines both the range of scales overwhich an investigatormay expect to find a scaling range and themaximum
number of data points available in the regression analysis. These windows are slid along the entire data set at the smallest
available increments, with the whole procedure iterated (n− 4) times, where n is the total number of available data points.
Within each window and for each width, we estimated the coefficient of determination (r2) and the sum of the squared
residuals for the regression. The values of l (Eq. (1)), which maximized the coefficient of determination and minimized the
total sum of the squared residuals, are then used to define the scaling range and to estimate the related fractal properties
(Tables 1 and 2). The zero-slope procedure originates from the equivalence between Eq. (1) and d logN(l)

d log l = −Db. This fact

implies that (i) a scaling regime will manifest itself as a plateau in plots of d logN(l)
d log l vs. log l, and (ii) the intercept of the range

of scales exhibiting a zero-slope behavior provides the fractal dimension. The range of scales exhibiting a zero-slope can
hence be objectively estimated using the moving regression window described above in the R2-SSR procedure, and for each
window the significance of the differences between the slope of each regression and the expected slope of 0 directly tested
using standard statistical analysis, such as the modified t-test; see e.g. Ref. [147].

An illustration of identification (and misidentification) of scaling ranges. The application of the zero-slope procedure to the
log–log plots of Eq. (1) observed forO. venusta (Fig. 3(a), (b)) andC. lavaretus (Fig. 3(c)) confirms the fractal nature ofO. venusta
swimming trajectories (Fig. 4(a)), but questions both the claimed fractal signature in C. lavaretus swimming behavior and
the value of the related fractal dimension (Fig. 4(b)). Specifically, the zero-slope criterion is statistically (P > 0.05) verified
over the whole range of scales considered in the original analysis of O. venusta behavior (Fig. 4(a)), indicating that the fractal
dimension is indeed scale-independent for scales ranging from 1 to 200 mm. Note that the fractal dimension returned by
the intercept, Db = 1.33, is statistically undistinguishable (P > 0.05) from the dimension reported in Seuront et al. [92],
i.e. Db = 1.32. In contrast, the fractal dimension of the swimming trajectories of C. lavaretus drastically changes with scales
(Fig. 4(b)). The zero-slope criterion is hence only verified for a very limited range of scales (Fig. 4(b)), which leads to Db = 1
(Fig. 4(b)). This clearly differs from both the scaling regime claimed over the whole range of available scales, and the related
fractal dimension (Db = 1.25) reported by Mahjoub et al. [99]. A close examination of the other log–log plots of logN(l)
vs. using the zero-slope procedure provided by Mahjoub et al. [99], see their Fig. 4, also shows that their fractal dimensions
change with scales, hence genuinely questions the claimed fractality of C . lavaretus swimming trajectories.

There is still room for improvement to ensure the pertinence of future fractal analysis of zooplankton swimming behavior
as nearly 50%of the 44 fractal studies examinedhere (Tables 1 and2) donotmention explicitly the use of any criteria of fitting
quality, 23% used linear regression and the coefficient of determination r2, and only 28% used one (or both) of the objective
optimization procedures detailed above. Notice that none of these studies explored the potential scale-dependence of the
fractal dimensions estimated from zooplankton swimming trajectories, in contrast to other areas of behavioral ecology such
as ornithology [142] or mammology [141,143,144].

There also still seems to be a misconception about the use of fractal analysis in zooplankton ecology, as I regularly
witnessed students and colleagues mentioning fractal dimensions as a way to ‘‘estimate the degree of convolution of a
trajectory, not at demonstrating the fractal nature of copepod behavior ’’. However, as stated above and elsewhere (see e.g.
Refs. [80,81]), a fractal dimension ismeaningful only if scaling properties are unambiguously demonstrated over a significant
range of scales [84], hence if the underlying behavior is fractal. Note that this misconception does not seem to appear in
other areas such as the behavioral ecology of intertidal gastropods [19,148] where fractal dimensions are non-ambiguously
defined as ‘‘a scale-independent geometrical description of the shape of the spatial movement patterns’’ [19].

4.3. Fractal walks vs. correlated random walks

The aforementioned lack (or limited) use of objective criteria to chose the range of scales used to estimate fractal
dimensions is also at the core of what Turchin [80] coined as ‘‘the fractal dimension is not constant but changes continuously
with scales’’ in reference to the piecewise linear signature returned by a Correlated RandomWalk in log–log plots of Eq. (1).
Note that as a consequence, if an organismmoves according to a Correlated RandomWalk, fractal analysis of thatmovement
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is not justified [80,81,149]. Correlated Random Walks are intrinsically non-fractal models, hence cannot be characterized
using fractal dimensions.

Correlated Random Walks may, however, erroneously return a fractal signature especially when the range of scales
available in the analysis (i.e. the number of data points) is limited [80,81,149]. This can also be the case as log–log plots of
N(l) vs. l by the fractal analysis of a Correlated RandomWalk as these plots can appear relatively, even very, linear depending
on the parameters used to simulate the Correlated Random Walk; see Ref. [149] for a detailed discussion on the topic. In
zooplankton ecology, a few simulation studies [94,97,100] analyzed the properties of simulated Correlated Random Walks
using a three-dimensional box-counting method. They found that ‘‘the regression lines of the log–log plots fit the points with
good accuracy’’ (r2 ≈ 0.99), and the resulting fractal dimensions were used to assess the ‘‘morphological complexity of the
trajectories’’. Note that the issue related to the analysis of Correlated Random Walks with fractal methods is not limited to
zooplankton behavioral ecology as e.g. a recent study of manta rays foraging behavior characterized tracks that are both
non-significantly and significantly different from a Correlated RandomWalk using fractal dimensions [150].

To my knowledge no attempt has been made to infer the presence of Correlated Random Walk in plankton behavior. To
avoid erroneously considering a Correlated RandomWalk as returning a fractal signature, prior to fractal analysis, it should
hence be tested, as a null hypothesis, whether a Correlated RandomWalk model adequately describes the properties of the
swimming trajectories. I hence briefly describe hereafter a simple procedure to determine whether a zooplankton organism
moves according to a Correlated RandomWalk model, using the CRWDiff statistic [143,144]:

CRWDiff =
1
k

k
n=1


R̄2
n − E(R2

n)

/(nl̄)2E(R2

n) (2)

where R̄2
n is the observed mean net distance squared for each of n consecutive moves, l̄ is the mean move length and E(R2

n)
is the expected square of the net distance traveled if the organism moves following a CRW given by [151]:

E

R2
n


= nE(l2) + 2E(l)2

c
1 − c


n − (1 − cn)/(1 − c)


(3)

where c is themean cosine of the turning angle θ , and l is the length of onemove. Under the null hypothesis of a CRW, CRWDiff
has a zeromean. Positive CRWDiff values indicate directedwalks (with amaximumvalue at 1), while negative values indicate
trajectories that cover a shorter distance than a CRW. Confidence intervals of CRWDiff are calculated by treating the squared
net distance traveled for each segment of n moves as independent samples [143]. If the null hypothesis is to be rejected, it
is still necessary to assess objectively the nature of the signature of the log–log plot of N(l) vs. l to ensure the reality of a
fractal signature.

4.4. On the actual fractality of fractal signatures

The fractal signature of Correlated Random Walks (or more generally the fractal signature of any non-fractal pattern or
process) can essentially be erroneously considered as the expression of a fractal behavior when the scaling range is narrow,
i.e. typically smaller than 1 decade – a recurring issue in ecological studies [6,84] – and leads to what is called apparent
fractality [79]; see also Refs. [82,83] for a review and a discussion of the issue of narrow scaling ranges in physical systems.
As a consequence, the relevance of any fractal analysis (hence the reliability of fractal dimension estimates) increases with
the range of scales exhibiting a fractal signature [79,82,83], hence unambiguous information about the range of scales used to
fit Eq. (1) are needed. This is potentially a critical issue in zooplankton behavioral ecology as the scaling regime has explicitly
been provided in only 14% of the 44 published fractal-related studies examined here, and the extent of the scaling regime
was available indirectly through a careful examination of their log–log plots in 32% of them (Tables 1 and 2).

For instance, in a study of the swimming behavior of the calanoid copepod P. annandalei [77], despite methodological
statements related to the minimum box size ‘‘set to 1 mm’’ and that ‘‘trajectories shorter than 1 cm were rejected to ensure
a minimal degree of space occupation’’, no information related to the range of scales over which Eq. (1) was fitted were
provided. Similar conclusions and criticisms can be drawn from a study of the behavior of the parasitic copepod Lernaeocera
branchialis [106]. These authors ran their fractal analysis for scales ranging from the size of an adult female (1.6 mm) to the
closest 2n (i.e. 26

= 64) value approximating the width of their experimental arena (75 mm), and claimed that ‘‘this range
was selected to ensure that an appropriate range of scales was covered to reliably estimate F (i.e. the fractal dimensionDb; see Eq.
(1)) (Turchin, 1996; Halley et al., 2004)’’. They did not, however, provide either a quantitative assessment of the goodness-
of-fit of Eq. (1) or the actual range of scales used to fit Eq. (1). In any case, the best possible scaling range achievablewith their
experimental design (λ = 40) is still relatively narrow sensu [80,84], who by no means supported the idea that a scaling
range of 40 ensures, that ‘‘an appropriate range of scales was covered to reliably estimate the fractal dimension’’ as claimed by
Brooker et al. [106]. As discussed in the present work (see text above, and Figs. 3 and 4) and elsewhere [6], the range of
scales available to fractal analysis and the range of scales exhibiting a power-law relationship are two distinct issues, even
if the relevance and reliability of fractal analysis increases with the range of scales exhibiting a fractal signature [79,82,83].

Finally, note that evenwhen the scaling range is (directly or indirectly) provided, it is generally relatively narrow, typically
in the range 0.5–2 decades (see Tables 1 and 2). This is consistentwith the values reported for the fractal structures identified
in a vast range of physical systems [79,82,83] and ecological systems [6,84]. The collection of data over a wider range of
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scales is one avenue to test the true value of fractals methods in ecology to avoid the fashionable tendency to see ‘fractals
everywhere’ stressed by Halley et al. [84]. This is not easily achievable, however, as there is a limit to how much the range
of scales available in the analysis can be increased, as every order of magnitude scale increase requires a non-trivial 10- to
1000-fold increase in the data array. In zooplankton behavioral ecology, the range of scales available is implicitly bounded
by the size of the organism and the experimental container and by the limits of optical systems, which urges the need to
use objectives fitting procedures to optimize the relevance of fractal analysis.

4.5. Do size, shape and position matter?

I now briefly describe how the length, orientation and placement of an object with respect to the initial box used to
implement Eq. (1) are all potential causes of errors linked to the intrinsically discrete nature of the box-counting algorithm
that can propagate into significant biases in the estimates of fractal dimension. This limitation can be illustrated a minima
with the simple example of a line segment embedded in a two- or three-dimensional space. Let us start with the fact that
the box-counting algorithm will return the value Db = 1 for a line segment only if (i) the box side and the line have an
equal length (or the line length is a linear function of the scale ratio between two steps of the box-counting algorithm
implementation), and (ii) the line is either vertical or horizontal. If the former condition is not fulfilled, the box-counting
algorithmmay lead to artificially increase the number of empty boxes, hence to decrease the fractal dimensions. In contrast,
if the latter condition is not fulfilled, different values of the angle between the line segment and the side of the boxmay lead
to either increase or decrease the number of empty boxes, hence respectively increase or decrease the fractal dimensions;
see e.g. Ref. [152] for a discussion. These two sources of error can be readily fixed by ensuring that the bounding box side
coincides with the width of the segment line, and the larger box must be framed so that the segment line is parallel and
touches the edges. The situation may become drastically more difficult to handle when far more complex shapes such as
zooplankton trajectories are considered.

A procedure leading tominimize the aforementioned sources of error is described hereafter. It shares the idea of box size
ranging for each trajectory from the size of the organism under interest and its maximal three-dimensional displacement
with other studies [77,104]. This method differs, however, as it uses systematic replicates of grid orientation in the box-
counting algorithm. This approach specificallyminimizes the potential biases related to both the anisotropy of the swimming
trajectory and the initial position of the overlying three-dimensional grid of orthogonal boxes [6,91]. For each box size l, the
grid is incrementally rotated of an angleα, whereα ranges from0 toπ/4 in the x–y plane, and from0 toπ/4 in the x–z plane.
The resulting distributions of fractal dimensions, estimated from each combination of the angles αx–y and αx–z , are averaged,
and the resulting dimension used to characterize the complexity of a swimming trajectory. The method is validated if none
of the returned fractal dimensions were statistically significantly different from (i) dimensions D = 1 and D = 2 when
respectively run on vectors of random length and orientation and on surfaces of random surface and orientation, and (ii)
the expected fractal dimensions of theoretical fractal objects such as the well-known Koch snowflake (D = 1.262), the
Koch island (D = 1.5), the Sierpinski carpet (D = 1.893) and the Sierpinski gasket (D = 1.585) [105]. Michalec et al.
[77,104] followed a slightly different approach through a script calibrated with vectors of random length and orientation in
the three-dimensional space through a principal component analysis. Principal component analysis was used to minimize
theperpendicular distances from thedata to the fittedmodel andproposed as an appropriatemethod to fit a linear regression
to scattered 3D data. The discrepancy between the observed fractal dimension of the straight line (D = 1.033 in Ref. [77])
and its expected value (D = 1) was used as a correction factor in the computation of the fractal dimension of the trajectory.
Note, however, that their algorithm returned fractal dimension below the lower limitD = 1; see their Fig. 8 [77].Wasserman
and Vink [78] first estimated the fractal dimension of a straight line (D = 0.97) and subsequently used the deviation to its
expected dimension (D = 1) as a correction for fractal dimension estimated from swimming trajectories.

4.6. 2D vs. 3D fractality, the question of isotropy

The aforementioned procedures will return an integrated, spatially-averaged, fractal dimension. In case of an anisotropic
swimming trajectory, this approachmay, however, implicitly hide potentially relevant information such as discrepancies in
the degree of space-filling of the trajectory in the horizontal and vertical dimensions of the three-dimensional domain. This
has been illustrated in detail by the fractal dimensions of the swimming trajectories of the cladoceran Daphnia pulex [91]
thatwere consistently significantly lower in the horizontal plane (Dx–y = 1.11±0.06) than in the vertical planes x–z (Dx–z =

1.21±0.05) and y–z (Dy–z = 1.20±0.07). The complexity of the vertical components of the D. pulex swimming trajectories
is then higher than the one of its horizontal components, suggesting that the vertical swimming behavior of D. pulex is more
complex than the horizontal ones. Note that the average of D2xy, D2xz and D2yz is not significantly different from the three-
dimensional fractal dimension of the trajectories D3 (D3 = 1.18 ± 0.06), due to the intrinsic three-dimensional integrative
properties of Eq. (1). Note, that a three-dimensional fractal dimension implicitly may, however, carry less information than
the fractal dimensions of their two-dimensional projections. Ameaningful three-dimensional fractal analysis hence requires
a critical assessment of its potential fractal anisotropy; for instance this approach led Mahjoub et al. [103] to identify an
isotropy and an anisotropy in the swimming behavior of Malabar grouper (Epinephelus malabaricus) larvae in the presence
and absence of prey, respectively. In their study of the swimming behavior of P . annandalei Michalec et al. [77] examined
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the magnitude of the horizontal and vertical components of the velocity vectors, and found that the horizontal component
was on average 1.5 times larger than the vertical one for all three adult stages. While this indicates a form of anisotropy in
P . annandalei swimming behavior, no mention was made about the potential anisotropy in their fractal dimension.

As a conclusion, it is recommended to consider explicitly the fundamentally three-dimensional nature of zooplankton
swimming behavior (i) to accurately estimate critical parameters such as swimming speed and the time spent in various
behavioral states [112], to avoid the confusionbetween swimmingdownward and sinking [73,105,112] and (ii) to objectively
infer the isotropic character of a given species motion [6,91,103].

4.7. Which fractal dimension is my fractal dimension?

A vast majority (ca. 80%) of the papers analyzed here did not estimate the fractal dimensions of the observed swimming
trajectories with more than one technique (Table 1). In addition, most of them did not compare their estimates to any of the
fractal dimensions reported in the literature for ichthyoplankton and zooplankton swimming trajectories that typically fall in
the range 1.0–1.8 [69,71–73,77,89,91–95,97,98,101,102,104–106,119]. Practical approaches to measure fractal dimensions
have, however, not yet been standardized and not all fractal dimension are comparable; see Ref. [6] for a review of fractal
methods and comparison of their fractal dimensions. As such, the reliability of fractal dimension estimates can also be
increased through the application of different methods on a given swimming trajectory. In addition to the box-counting
method, two conceptually similar methods described below are very well adapted to the characterization of swimming
trajectories, the divider dimension method and the mass dimension method.

The divider dimension Dd (also referred to as the compass dimension; [91]) was estimated – in 7 of the 24 papers (29.2%)
reviewed in Table 1 – by measuring the length of a trajectory at various scales δ. The procedure is analogous to moving a set
of dividers (like a drawing compass) of fixed length δ along the trajectory. The estimated length of a trajectory L(δ) increases
with increasing δ as:

L(δ) ∝ δ1−Dd . (4)

Noticing that the estimated length L(δ) is the product of N(δ) (the number of compass dividers required to cover the
trajectory) and δ (L(δ) = N(δ)δ), Eq. (4) can be written as:

N(δ) ∝ δ−Dd . (5)

Note that Dowling et al. [89] incorrectly quoted Eq. (4) as L(δ) ∝ δ−Dd ; this error cannot, however, explain their fractal
dimensions Dd < 1.

The mass dimension method, used in only 2 of the 24 papers reviewed in Table 1, counts the number of pixels occupied
by a trajectory in cubic (δ × δ) sampling windows. The mass m(δ) of occupied pixels is subsequently defined as m(δ) =

NO(δ)/NT (δ), where NO(δ) and NT (δ) are respectively the number of occupied pixels and the total number of pixels within
an observation window of size δ. These computations are repeated for various values of δ, and the mass dimension Dm is
defined as:

m(δ) ∝ δDm (6)

where the fractal dimension Dm is estimated from the slope of the linear trend of the log–log plot ofm(δ) vs. δ.
It is readily seen from Eqs. (1) and (5) that Db = Dd, while more convoluted developments show that Db = Dm,

hence Db = Dd = Dm; see Ref. [6] for details. Statistically inferring the absence of significant differences between fractal
dimensions returned by different methods of analysis hence constitutes an additional guarantee of the trustworthiness of
the fractal dimension estimates.

5. From self-similar to self-affine fractals

5.1. Definition

As described above, fractals are scale-independent geometric objects. However, scale-independence can be dichotomized
into self-similar and self-affine fractals. An object is called self-similar if it may be written as a union of rescaled copies of
itself, under the condition of an isotropic (i.e. uniform in all directions) rescaling. For instance, theoretical fractal objects
such as the Cantor set (Fig. 5(a)) display exact self-similarity; in other words there are no upper and lower bounds to their
fractality, i.e. Eqs. (1), (4) and (6) will display linear log–log plots whatever the spatial scales considered may be. Unlike
theoretical fractals, natural fractal objects do not display exact self-similarity. Instead they display self-similarity at least
over a limited range of scales, corresponding to partial self-similarity; Eqs. (1), (5) and (6) will hence exhibit a power-law
only over a limited range of scales (Fig. 3(b)). For example, lung branching shows self-similarity over 14 dichotomies, and tree
branching over 8 dichotomies. Note, however, that in zooplankton behavioral ecology, partial self-similarity is essentially
controlled by experimental constraints. For instance, in zooplankton studies the lower and upper spatial and temporal scales
accessible for behavioral analysis are intrinsically limited by the temporal resolution of the camera, the time needed by an
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Fig. 5. Illustration of the fundamental differences between exact (A) and statistical (B) self-similar fractal objects, and self-affine fractal objects (C). The
theoretical Cantor set (A) displays exact self-similarity, as it is constructed following the same rule at each step of the construction, that is a given line
segment is divided into thirds, the central part is removed, the procedure is repeated on the two remaining third, and after an infinite number of iterations,
this converges to a set of points or Cantor set, also referred to as Cantor dusts. The fractal dimension of the Cantor set is dependent on the scale ratio applied
between two successive steps, here at each step there are two elements that are three times smaller than the original one, hence D = log 2/ log 3 = 0.631.
A copepod trajectory (B) displays partial self-similarity (here a two dimensional projection of the 3D trajectory of an adult male E. affinis; see Seuront [105],
his Fig. 2(a)). In contrast, the time series of the instantaneous velocities of an adult male E. affinis (C) along his trajectory is self-affine in a sense that the
x-axis and the y-axis correspond to distinct physical quantities, i.e. time and velocity.

organism to reach the wall of the container, the size of the organisms under consideration and the size of the experimental
containers.

In contrast, an object is called self-affine if it may be written as a union of rescaled copies of itself, where the rescaling is
anisotropic (i.e. dependent on the direction). Consider, for example, the velocity of the copepod Eurytemora affinismeasured
as a function of time (Fig. 5(c)) along the trajectory shown in Fig. 5(b). It looks rough, like the boundary of a random
fractal, with the two axes corresponding to physical quantities (velocity and time) that are intrinsically different. In general,
whenever different quantities involved in such constructions scale differently, the notion of self-similarity contained in
Eqs. (1), (4) and (6) will not be adequate; to describe these phenomena, one needs the more versatile machinery of
self-affinity.
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5.2. Dimension of self-affine fractals

5.2.1. Spectral analysis
Spectral analysis is an expression of the variance (stricto sensu the square of the amplitude of the Fourier transform) of a

descriptor at different temporal or spatial scales. In practice, the power spectral density E(x) is given by

E(x) ∝ x−β (7)

where x is the frequency (s−1; f = 1/t , where t is time) or the wavenumber k (m−1; k = 1/l, where l is space) for temporal
and spatial self-affine processes, respectively. The spectral exponent is estimated as the slope of a log–log plot of Eq. (7)
using one of the fitting procedures described above.

Brownian motion (i.e. normal diffusion) is characterized by β = 2. Anti-persistent and persistent fractional Brownian
motions (fBm) are characterized by β < 2 and β > 2, respectively. In contrast, anti-persistent and persistent fractional
Gaussian noises (fGn) are respectively characterized by β < 0 and β > 0. Note that fractional Gaussian noises and
fractional Brownian motions differ in that they are respectively stationary and non-stationary processes. Briefly put,
stationary processes fluctuate by a relatively constant degree around a mean value that remains relatively constant over
time (Fig. 6(a)–(c)), whereas for a non-stationary process the statistical moments of the process (e.g. mean and variance)
are time-dependent (Fig. 6(d)–(e)). More specifically, a fractional Gaussian noise is defined as the successive increments of
a fractional Brownian motion, and a fractional Brownian motion is the result of the cumulative sum of a fractional Gaussian
noise; see Ref. [153] for a detailed description of the dichotomy between fractional Gaussian noises and fractional Brownian
motions. In terms of motion behavior, anti-persistence means that increases in the signal (for fGn) or in the increments of
the signal (for fBm) are more likely to be followed by decreases, and vice versa decreases are more likely to be followed by
increases; Fig. 6(a), (d). In contrast, persistence implies that increases in the signal (for fGn) or in the increments of the signal
(for fBm) are more likely to be followed by further increases, and decreases are likely to be followed by decreases (Fig. 6(c),
(f)). Anti-persistent and persistent processes contain structure that distinguishes them from truly random sequences of
data. The spectral exponent β can subsequently be expressed as a fractal dimension, the Fourier dimension DFFT as Ref. [46]
DFFT = DE + 1− (β − 1)/2 for fractional Brownian motions, and DFFT = DE + 1− (β + 1)/2 for fractional Gaussian noises,
where DE is the Euclidean dimension of the embedding space, e.g. DE = 1 for a time series of successive displacements (see
Fig. 5(c)).

Spectral analysis has still barely been used in zooplankton behavior (Table 2), and returned a relatively wide range of
values of the spectral exponent β depending on the species considered. For instance, the velocity components of D. pulex
and Clausocalanus furcatus were both characterized by β ≈ 0 [98,107], indicative of a random process without internal
serial correlation. In contrast, β ranged from 0.3 to 0.75 in Temora longicornis [116], and 1.4 to 1.5 in P. annandalei [109]. This
suggests that zooplankton organisms exhibit a range of behavior including fractional Gaussian motion, fractional Gaussian
noise and pure random noise.

5.2.2. Probability density functions
Self-affine techniques based on the analysis of frequency distributions have also been used in zooplankton behavioral

studies (Table 2). They include consideration of the scaling properties of the probability distribution functions (PDFs) of
either the time tx spent in a specific behavioral state x [108–110,112]:

p(tx) ∝ t−c
x (8)

or the velocity vx used to defined different behavioral states x:

p(vx) ∝ v−c
x . (9)

Various behavioral states have been considered through Eqs. (8) and (9) in the literature (Table 3). They include (i) break (no
motion) and slow swimming in Cosmocalanus darwinii [108], (ii) break, sinking, cruising and fast swimming in E. affinis [110],
(iii) break, swim, jump and sink in P. annandalei [109], (iv) break, cruise and sink in both E. affinis and P. annandalei [112],
(v) static, crawling, cruising, fast swimming and sinking in L. branchialis [106], and (vi) generic instantaneous speed in E.
affinis [114] (Tables 2 and 3).

The values of the exponent c returned by Eqs. (8) and (9) for a range of species under various experimental conditions
are reported in Table 3. Note, however, that some of the values reported in Table 3 should be considered with an extreme
caution. Indeed, none of the above-mentioned studies used any objective optimization procedures to choose the range of tx
or vx values over which to fit Eqs. (8) and (9), respectively. In some cases, it is also unlikely that most of the log–log plots of
p(tx) vs. tx (see Ref. [109], their Fig. 6, and [112], their Fig. 5), and p(v) vs. v (where v is the swimming speed; [110], see their
Fig. 2) may satisfy the scrutiny of any of the objective optimization procedures described above. In particular, the exponents
c estimated for the ‘jump’ behavioral state in P . annandalei females and males are based on respectively only three and two
points ([109]; see their Fig. 6(c) and their Table 3); the former is at best highly questionable, while the latter is fundamentally
fallacious as based on a mathematical heresy.

It is also stressed that the potential amalgamation between actual sinking and vertical downward swimming, as well
as the author-related differences in the definition of a given behavior – see e.g. Ref. [105] for a discussion on the topic –
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Fig. 6. Examples of fractional Gaussian noises (fGn; A–C) and fractional Brownian motions (fBm; D–F) characterized by a Hurst exponent H = 0.25 (A,
D), H = 0.5 (B, E) and H = 0.75 (C, F). Note the one-to-one correspondence between fGn and fBm; a stationary fractional Gaussian noise constitutes the
successive increments of a non-stationary fractional Brownian motion, and reciprocally a fractional Brownian motion is the result of the cumulative sum
of a fractional Gaussian noise. The insets show details of the fGn.
Source:Modified from Ref. [6].

likely impacts the values of the exponent c estimated for both sinking and swimming. As such, this may – to some extent
and beyond the inherent behavioral differences related to different species and experimental conditions and treatments
– explain the observed variability between the exponents c (Table 3). This variability is particularly pronounced in the
behavior of L. branchialis [106] as the relative differences between the exponents c estimated in control water and in an
experiment where control water was introduced in the experimental chamber as a control treatment for the ‘static ’ (1.19),
‘crawl’ (1.01), ‘cruise’ (0.68) and ‘sink’ (1.05) swimming states strongly overlap with those estimated in control water and
after the introduction of water conditioned by the smell of a few fish species that are respectively in the range 0.78–1.15,
0.91–1.04, 0.21–1.38 and 1.02–1.08.While the resolution of this specific issue goes far beyond the scope of the presentwork,
this observation may suggest that the effect of the experimental design on swimming behavior is of the same magnitude or
even greater than the behavioral effect induced by most of the actual treatments.

Finally, a strong discrepancy is also noted in the use of Eqs. (8) and (9). Specifically, most (80%) of the published reports
that investigated the PDFs of the time tx spent in a specific behavioral state x actually studied the scaling properties of Eq. (8).
In contrast, 80% of the published work that considered the PDFs of the velocity vx characterizing a behavioral state x did not
actually study the scaling properties of Eq. (9) (Table 2). Instead, these studies assessed eventual differences in the shape of a
log–log plots of p(vx) vs. vx. For instance, a few papers applied Eq. (9) to assess eventual differences in the shape of a log–log
plot of p(vx) vs. vx between (i) E. affinismales, ovigerous females and non-ovigerous females exposed to the presence of the
predatory Dicentrarchus labrax larvae [120], (ii) P . annandaleimales and E. affinismales observed in experimental containers
of different volumes and under various conditions of individual concentrations [115], (iii) T . longicornis males and females
exposed to different food treatments [116], and (iv) P . annandaleimales, females and ovigerous females respectively exposed
to various waterborne pollutants [104] and to a diatom toxin [119].
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5.2.3. Cumulative probability distribution functions
A few studies have investigated the scaling properties of the cumulative probability distribution functions (CDFs) ofmove

durations T greater than a determined duration t in the calanoid copepod Centropages hamatus [70]:

p(t ≤ T ) ∝ t−φ (10)

and move lengths L greater than a determined length l in a range of calanoid copepod species, i.e. Acartia clausi, Centropages
typicus, Paracalanus parvus, Pseudocalanus elongatus and T. longicornis [72] and E. affinis [73]:

N(l ≤ L) ∝ l−φ . (11)

The values returned by Eqs. (8)–(11) for a range of species under various experimental conditions are reported in Table 3.
Note that there is a one-to-one correspondence between the exponents c and φ obtained via the scaling properties of PDFs
and CDFs, i.e. c = 1 + φ [122].

6. From fractals to multifractals

6.1. A first step towards multifractals

To my knowledge, the first published work that ever used the concept of multifractals in marine biology and ecology,
entitled ‘Intermittency in the plankton: a multifractal analysis of zooplankton biomass variability’ [61], went well beyond the
concept of fractal itself, that had still seldom been used since then; see also Seuront [6] for a more general review on the
subject. Following Feder [125], a measure (i.e. a physical quantity such as mass, energy, a number of individuals, or more
specifically the distance displaced by a copepod) has to be distinguished from its geometric support, which might or might
not have a fractal geometry. Then, if ameasure has different fractal dimensions on different parts of the support, themeasure
is a multifractal. Multifractals are hence a generalization of fractal geometry initially introduced to describe the relationship
between a given quantity and the scale at which it is measured. While fractal geometry describes the complexity of a given
pattern with the help of only one parameter (the fractal dimension), multifractals characterize its detailed variability by an
eventually infinite number of sets, each with its own fractal dimensions.

6.2. A step further: multifractals as a diagnostic tool to assess a family of diffusive search patterns

Multifractals have been used to describe the intermittency (very rare and violent fluctuations interspersed between areas
of relative stasis) in time series, transects or vertical profiles of ocean passive scalars temperature, salinity, turbulent shear,
phytoplankton and zooplankton biomass [46–49,63,154–158]. In zooplankton behavioral ecology, multifractals quantifies
the intermittent nature of the successive displacements of a range of species (Fig. 5(c), Table 4), including the cladoceran
D. pulex [159], and the calanoid copepods T. longicornis [113,159,160], P. annandalei [109,112,115], E. affinis [109,112,
113,115], and Calanus sinicus [161]. Specifically, the strongly non-Gaussian fluctuations perceptible in copepod successive
displacements that range from very likely slow steps to rare and extremely rapid displacements (Fig. 5(c)) are inherently
incompatible with classical self-affine approaches based e.g. on the scaling behavior of the power spectral density (Eq. (8))
or the root-mean-square fluctuation of the displacement (R (t) ∝ tα; [162]) – see Refs. [6,163] for further examples – that
are limited to second-ordermoments. Amore general approach is based on the analysis of qth order long-range correlations
in copepod displacements. Specifically, the norm ∥1X τ∥ of copepod three-dimensional displacements is defined from

Xτ ≡ (xt , yt , zt) coordinates as ∥1X τ∥ ≡


xt+τ − xt2 +(yt+τ − yt)2 + (zt+τ − zt)2


, where τ is the temporal increment,

and (xt , yt , zt) and (xt+τ , yt+τ , zt+τ ) are respectively the positions of a copepod at time t and t+τ . ∥1X τ∥ is a non-stationary
processwith stationary increments, its statistics do not depend on time, t , but on the temporal increment τ [6]. Themoments
of order q (q > 0) of the norm of three-dimensional displacements ∥1X τ∥ depend on the temporal increment τ as:

⟨∥1X∥
q
⟩ ∝ τ ζ (q). (12)

The exponents ζ (q) are estimated as the slope of the linear trend of ⟨∥1X∥
q
⟩ vs. τ in log–log plots using the objective

optimization criteria defined above. The moment function ζ (q) characterizes the statistics of the random walk ∥1X τ∥
q

of the copepod regardless of the scale and intensity [6,113]. Low and high orders of moment, q, characterize respectively
smaller andmore frequent displacements, and larger and less-frequent displacements. Note the one-to-one correspondence
between the function ζ (q) and the spectral exponent β for q = 2, i.e. β = 1 + ζ (2) [49].

The shape of the function ζ (q) can be used as a direct, objective and quantitative diagnostic tool to unambiguously
identify the type of motion exhibited by copepods, and ultimately any swimming organisms (Fig. 7) [113]. Briefly, for
Brownian motion, ζ (q) = q/2, and fractional Brownian motion is defined as ζ (q) = qH where H = ζ (1), with the
limits ζ (q) = 0 and ζ (q) = q corresponding respectively to confinement and localization, and ballistic motion. Note
that because a fractional Brownian motion is the fractional integration of order h of a Gaussian noise [164], the function
ζ (q) can also be written as ζ (q) = q(h − 1/2); the Brownian motion case corresponds to the special case h = 1 (i.e. an
ordinary integration of a Gaussian white noise), hence H = 1/2. Anomalous diffusion occurs when H ≠ 1/2. Specifically,



428 L. Seuront / Physica A 432 (2015) 410–434

Table 4
Review of zooplankton behavioral studies based on self-affine multifractal methods.

Organism Species Method Scaling range Optimization criteria 2D vs. 3D Source

Crustacean (Copepoda) T. longicornis ⟨∥1Xτ ∥⟩ ≈ τ ζ (q) 100 na 3D [160]
Crustacean (Copepoda) T. longicornis ⟨∥1Xτ ∥⟩ ≈ τ ζ (q) 100 R2-SSR; zero-slope 3D [159]
Crustacean (Cladocera) D. pulex ⟨∥1Xτ ∥⟩ ≈ τ ζ (q) 67 R2-SSR; zero-slope 3D
Crustacean (Copepoda) P. annandalei ⟨∥1Xτ ∥⟩ ≈ τ ζ (q) 100a R2-SSR 2D [109]
Crustacean (Copepoda) P. annandalei ⟨∥1Xτ ∥⟩ ≈ τ ζ (q) na R2-SSR 2D/3D [115]

E. affinis ⟨∥1Xτ ∥⟩ ≈ τ ζ (q) na R2-SSR 2D/3D
Crustacean (Copepoda) P. annandalei ⟨∥1Xτ ∥⟩ ≈ τ ζ (q) na R2-SSR 3D [112]
Crustacean (Copepoda) C. sinicus ⟨∥1Xτ ∥⟩ ≈ τ ζ (q) na na 2D [161]
Crustacean (Copepoda) P. annandalei ⟨∥1Xτ ∥⟩ ≈ τ ζ (q) 50a na 3D [119]
Crustacean (Copepoda) T. longicornis ⟨∥1Xτ ∥⟩ ≈ τ ζ (q) 1000 R2-SSR 3D [113]
Crustacean (Cladocera) E. affinis ⟨∥1Xτ ∥⟩ ≈ τ ζ (q) 1000 R2-SSR 3D
a The scaling ranges were not explicitly provided, but estimated graphically from the figures of the published work.

super-diffusion occurs when H > 1/2, and sub-diffusion when H < 1/2. For finite-length Lévy flights (and truncated Lévy
flights [165]), the function ζ (q) is bilinear with ζ (q) = q/ (µ − 1) for q < µ − 1 and ζ (q) = 1 for q ≥ µ − 1; the exponent
µ (1 < µ ≤ 3) characterizes the power-law tail of the probability distribution of the move-step length l as P(l) ≈ l−µ,
where 1 < µ ≤ 3. Forµ ≥ 3 themean and the variance of themove-step-lengths are both finite, hence as a consequence of
the central-limit theorem, their distribution is Gaussian. For 1 < µ < 3, the scaling is super-diffusive (i.e. the search pattern
is tailored to minimize the distance traveled whilst locating prey), while the value µ = 2 corresponds to the lower extreme
of super-diffusive processes, that is a Lévy flight. For constant-velocity Lévy walks, ζ (2) = 2 for µ < 2 and more generally
ζ (q) = q for µ < 2, while ζ (2) = 4 − µ for 2 < µ < 3. However, the intermittent velocities of copepods range from very
likely slow steps to rare and extremely rapid displacements (Fig. 5(c)) which are incompatible with a constant-velocity Lévy
walk. The velocity need not to be a constant, in which case the behavior of the function ζ (q) has yet to be defined [113].
For fractional Lévy motion (i.e. a fractional integration of order h of a Lévy noise [166]), the function ζ (q) is also bilinear
with ζ (q) = q[h − 1 + (1/µ − 1)] for q < µ − 1 and ζ (q) = q(h − 1) + 1 for q ≥ µ − 1 [167]. Finally, when the
function ζ (q) is nonlinear and convex, the resulting diffusion is referred to as being multifractal [47–49], hence the term
multifractal anomalous diffusion, or multifractal random walk [160]; see Ref. [113] for further references and explanations.
The significativity of the differences between the empirical values of the function ζ (q) and their theoretical expectations for
ballistic and Brownian motion, ζ (q) = q and ζ (q) = q/2, can be inferred using a modified t-test [147]. Similarly, empirical
ζ (q) can be practically compared using standard t- and F-tests [147].

6.3. Multifractals and zooplankton behavioral ecology so far

The applicability of Eq. (12) to zooplankton swimming behavior has initially been explored in the calanoid copepod T.
longicornis [159,160] and the cladoceranD. pulex [159], which bothmove following amultifractal randomwalk (Fig. 8). These
early studies were followed by investigations of the sex-specific differences in P. annandalei motion behavior in filtered
water [109], the effects of animal density, volume and the use of 2D vs. 3D recording on P . annadalei and E. affinis swimming
behavior [112], the role of female chemical cues in the motion behavior of P. annandaleimales [115], the effect of both food
and light on C. sinicus female swimming behavior [161], and the effect of a diatom toxin (2-trans, 4-trans decadienal) in
the motion behavior of P. annandalei males, non-ovigerous females and ovigerous females [104]. More recently, Eq. (12)
has been used to investigate the effect of male and female chemical cues on the swimming behavior of virgin and non-
virgin males and females to infer the innate and acquired components of E. affinis (Fig. 9) and T. longicornis (Fig. 10) mating
strategies [113]. Note that the motion behavior of all the copepod and cladoceran species investigated so far using Eq. (12)
consistently exhibit multifractal properties [109,112,113,115,119,159–161], which suggests that this model of motion may
be universal in crustacean zooplankton.

More specifically, in the absence of cues most observations indicate a super-diffusive multifractal randomwalk behavior
(i.e. an extensive search pattern) that either converge towards Brownian motion [109,112,115,119,160] or switch towards
sub-diffusivemultifractal randomwalks (i.e. an intensive search pattern; [113]) when cue intensity is increasing (Figs. 9 and
10). While the nature of this switch is clearly sex- and species-dependent (Figs. 9 and 10), these results may be a first step
towards generalizing to invertebrates an optimal search strategy, initially coined as the ‘Lévy flight foraging hypothesis’ [168],
which predicts that predators should adopt Lévy search strategies for locating sparsely and randomly distributed prey in
resource-depleted environments, and Brownian movement where prey is abundant and probably more predictable, and
has been used to explain the strategies of large marine predators searching for food; e.g. Refs. [168–171]. In addition, the
sub-diffusive multifractal random walks observed in the presence of chemical cues are consistent with the multifractal
distributions of ocean turbulence [66] and passive tracers such as phytoplankton [47–49,154–157] and copepods [46]; they
may hence be an evolutionary adaptive behavior to the stochastic patterns of the olfactory landscape [113]. This is supported
by theoretical developments showing that a multifractal randomwalk leads to increase male–female encounter rates by 33
to nearly 140% [113]; this stresses the adaptive value of multifractal random walks in the optimization of mate encounter
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Fig. 7. Identification of a model of searching from intermittent behavioral data using the empirical function ζ (q). ζ (q) is a continuous function of the
statistical order of moment q. The function ζ (q) is linear for fractional Brownian motion (ζ (q) = qH), with the limit ζ (q) = q (dotted line) corresponding
to ballistic motion. For Brownian motion, ζ (q) = q/2 (dashed line). When 0 < H < 0.5 the motion is sub-diffusive, while when 0.5 < H < 1 it is
super-diffusive. For Lévy flights, ζ (q) = q/(µ − 1) for q < µ − 1 and ζ (q) = 1 for q ≥ µ − 1; µ (1 < µ ≤ 3) describes the tail of the probability
distribution function of successive displacements l (P(l) = kl−µ) with µ = 2 (open dots) characterizing optimal Lévy flights. The limit µ = 3 is shown by
black dots. For a multifractal random walk, the function ζ (q) is nonlinear and convex (continuous line).
Source:Modified from Ref. [113].

A

B

Fig. 8. Illustration of the empirical function ζ (q) obtained from 160 s of intermittent velocity fluctuations observed in D. pulex at 10 frames s−1 (A; gray
curve) and T. longicornis at 12.5 frames s−1 (B; black curve). The nonlinear convex shape of ζ (q) is indicative of a multifractal randomwalk. The theoretical
function ζ (q) expected for ballistic motion ζ (q) = q (dashed line) and Brownian motion ζ (q) = q/2 (dotted line) is shown for comparison. The vertical
scales are 0–6 mm s−1 for D. pulex (A) and 0–35 mm s−1 for T. longicornis (B).
Source:Modified from Ref. [159].

rate. More practically, the lack of consideration of the multifractal nature of P. annadalei random walk [109,112,115] in a
subsequent estimate of their encounter rates may explain why encounter rates estimated from mean swimming speed of
males and females are considerably lower than those reported in the literature [115].

Virgin males and females also exhibit sex-specific behaviors [113]. Specifically, in the absence of cues both E. affinis and
T. longicornis virgin males exhibit diffusive swimming behavior (Figs. 9(a) and 10(a)). In contrast, virgin females of both
species exhibit a multifractal random walk (Figs. 9(c) and 10(c)), suggesting that optimal search strategy is only an innate
behavioral property in females of E. affinis and T. longicornis. In addition, E. affinis and T. longicornis virgin males do not
exhibit any behavioral changes related to the exposure to female-conditioned water, suggesting a lack of innate behavioral
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A C

B D

Fig. 9. Innate vs. acquired and sex-specific search strategies in both males (A, B) and non-ovigerous females (C, D) of the calanoid copepod E. affinis
revealed by differences in the empirical function ζ (q) estimated in control filtered and autoclaved estuarine water (A, C) and in filtered and autoclaved
estuarine water that held N = 1, 5, 10, 20, 50 and 100 non-ovigerous females (B) and 100 males (D) per liter during 24 h. Virgin males (A, B) and females
(C, D) are shown in gray. The linear functions expected for ballistic motion (ζ (q) = q; dashed line) and Brownian motion (ζ (q) = q/2; dotted line) are
shown for comparison.
Source:Modified from Ref. [113].

response to female pheromones. In contrast, virgin females of both species respond to male-conditioned water through a
slight decrease in their multifractal super-diffusive properties (Figs. 9(c) and 10(c)), which significantly diverge from the
nearly ballistic behavior exhibited under control water conditions (Figs. 9(d) and 10(d)). This indicates an innate response
of females to male pheromones, and provides the first evidence for sex-specific innate adaptive behavioral properties in
copepods. Further work is, however, needed to generalize the results described above to different zooplankton species and
a range of environmental conditions.

Most of the studies that used Eq. (12) did not statistically assess the differences that may exist between (i) empirical
ζ (q) and the theoretical functions such as ballistic motion, Brownian motion and Lévy walks [109,112,119,158–160]; (ii)
empirical ζ (q) estimatedunder different experimental conditions, i.e. different conditions of food and light [161], conspecific
individuals of different sex [109], in the presence and absence of the chemical cues of a conspecific female [112], and in the
presence and absence of diatom toxin [119]; and (iii) empirical functions ζ (q) estimated from three-dimensional data and
from their two dimensional (x, y), (y, z) and (x, z) projections [115,160].

In addition, apart from one exception [113], the published studies using Eq. (12) in zooplankton behavioral ecology did
not quantify the value of q when empirical and theoretical ζ (q) or different empirical ζ (q) start to significantly diverge.
This is, however, critical as differences in the function ζ (q) have been visually assessed [109] and statistically inferred [113]
between treatments despite non-significant differences between swimming speeds. This fact further stresses the potential
strength of multifractals to assess zooplankton swimming behavior especially when compared to traditional behavioral
metrics. The reader is finally referred to Ref. [6] for further examples of how existing multifractal techniques such the
Generalized dimension function D(q), the mass exponent function τ(q) and the multifractal spectrum f (α(q)), may be used
in zooplankton behavioral ecology, and how they can be compared to the function ζ (q) described here.

7. Conclusion

Fractal andmultifractal analyses – and the related fractal dimension D, exponents c and φ, andmultifractal function ζ (q)
– have the desirable properties to be independent of measurement scale and to be very sensitive to even subtle behavioral
changes that may be undetectable to other behavioral variables. As early claimed by Coughlin et al. [69], this creates ‘‘the
need for fractal analysis’’ in behavioral studies, which has hence the potential to become a valuable tool in zooplankton
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A C

B D

Fig. 10. Innate vs. acquired and sex-specific search strategies in both males (A, B) and non-ovigerous females (C, D) of the calanoid copepod T. longicornis
revealed by differences in the empirical function ζ (q) estimated in control filtered and autoclaved estuarine water (A, C) and in filtered and autoclaved
estuarine water that held N = 1, 5, 10, 20, 50 and 100 adult females (B) and 100 males (D) per liter during 24 h. Virgin males (A, B) and females (C, D) are
shown in gray. The linear functions expected for ballistic motion (ζ (q) = q; dashed line) and Brownian motion (ζ (q) = q/2; dotted line) are shown for
comparison.
Source:Modified from Ref. [113].

behavioral ecology. This is supported by the increasing use of fractals (Fig. 1(b), Tables 1–3) – and the more elaborated
multifractals (Table 4) – to describe the complexity of plankton swimming behavior over the last two decades. However, as
stressed in the present paper, fractal and multifractal analyses are also a risky business that may lead to irrelevant results
without paying extreme attention to the critical steps addressed here and that are all likely to bias the results of any fractal
or multifractal analysis. It is also noteworthy that swimming trajectories that seem distinct through visual inspections have
been characterized by non-significantly different fractal dimensions [77,78]. This observation suggests that fractals may not
necessarily be the ultimate tool to assess the complexity of swimming behavior under any experimental or environmental
conditions, and warrants the need for further research in this area. It is hoped that this review will help in furthering the
use of fractals and multifractals in zooplankton ecology in general and zooplankton behavioral ecology in particular, as it is
strongly believed that our journey to further our understanding of zooplankton behavior from a fractally-colored angle is
still at its early stage.
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